Skip to main content


A central problem faced by multi-cellular organisms is the need for rare progenitor cells to continually produce terminally differentiated cells while also preserving a self-renewing lineage. What mechanisms allow a progenitor cell to give rise to two daughter cells that adopt such different fates? One potential solution is an evolutionarily conserved mechanism called asymmetric cell division, during which a dividing cell imparts unequal inheritance of its components to its two daughter cells, making them different from inception.

Challenges in Immunology

From the August 3rd, 2007 issue of ScienceChallenges in Immunology

In the mammalian immune system, T lymphocytes face a similar need for simultaneous differentiation and regeneration. While our circulating lymphocytes are collectively capable of recognizing virtually any microbial invader, the price paid for this breadth of recognition is an extremely limited number of lymphocytes specific for any given microbe. During a microbial infection, a naïve lymphocyte, so called because it has never encountered its foreign antigen, must give rise to two distinct classes of cellular progeny:terminally differentiated effector cells that provide acute protection and self-renewing memory cells that provide long-lived immunity. Our lab seeks to understand the mechanisms underlying specification of these disparate fates. We have found that T lymphocytes exploit an